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Cooperative ring exchange in the II = 1 ]Landau level 
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Department of Physics, University of Wamick, Coventry C V 4  7AL, UK 

Received 1 October 1991 

Abstract. We consider the Semiclassical description of the fractional quantum Hall effect 
based on cooperative ring exchange. We generalize the original picture to the n = 1 
Landau level and look at its validity. We find that the Wigner.cvtal-like configurations 
which are the starting point for the picture are unstable for filling fractions VI  2 113. 
For ut < 113 the effects of ring exchange are quantitatively v e ~ y  similar to those in the 
n =O Landau level. 

1. Introduction 

The theory of the fractional quantum Hall effect (FQHE) is based on Laughlin’s 
wavefunction [I] and its generalizations [2]. These include hierarchical fluids, spin- 
singlet states and higher Landau level effects. A semiclassical a m u n t  of the FQHE 
due to Kivelson, Kallin, Arovas and Schrieffer [3] (KKAS) has also been proposed. 
This links the stability of the ground-state as a function of the filling fraction of the 
lowest Landau level with cooperative tunneling events between classically minimal 
energy configurations. The authors claim that this semiclassical picture is consistent 
with Laughlin’s theory [4]. 

The tunnelling events identified by KKAS involve electrons tunnelling coopera- 
tively around rings. The contributions to the partition function of these events add 
coherently at filling fraction of the lowest Landau level, v = 1/ (2p+ 1). provided 
the (classically stable) initial and final configurations are those characteristic of an 
incompressible fluid. In any one process particles tend to remain well-separated and 
so at least for particles with short-range repulsive interactions these events should 
contribute to a lowering of the free energy. 

KKAS found an approximate mapping between contributions from these ring ex- 
change events to the partition function and those of domain walls in the discrete 
Gaussian model on a lattice. The order4sorder transition in the discrete Gaussian 
model corresponds to a transition between a ‘sparse-ring’ phase in which ring events 
do not make a significant contribution to the partition function and a ‘dense-ring’ 
phase. The ’sparse-ring’ phase found to be stable at low filling fraction retains the 
essential features of the configurations coupled by the ring exchange events which 
at low enough temperatures should be Wigner-crystal-like. The ‘dense-ring’ phase is 
identified with the incompressible Laughlin fluid. 

The transition between the two phases.is calculated by KKAS to occur at a filling 
fraction of the lowest Landau level between Ii3 and 115. This is (perhaps remarkably 
given the level of approximation) consistent with recent experimental indications [S,6]. 
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1764 N dXmbmmenil and A M Reynolds 

We consider here whether the semiclassical picture based on cooperative ring 
exchange (cRE) makes sense for spin-polarized electrons in a partially filled n = 1 
Landau level. AJthough a partially occupied n = 1 Landau level may not be fully 
spin-polarized the properties of spin-polarized electrons in the n = 1 Landau level are 
known theoretically at some filling fractions from finite size studies [7]. In particular 
it is known that for filling fractions vl < 1/3  fractional quantum Hall states can be 
expected much as in the R = 0 Landau level for v, < 1. However, the Laughlin state 
at U, = 1 / 3  is not a good description of the ground state of electrons interacting via 
the Coulomb interaction in the n = 1 Landau level which is probably gapless and 
compressible [SI. 

We generalize the CRE description of the FQHE to the case of spin-polarized 
electrons in the n = 1 Landau level. The system is governed by one parameter, 
o((v), just as for the n = 0 case. a(v)  measures the contribution per unit length 
of the ring of a single cooperative tunnelling process. We find that as in the n = 1 
Landau level a(v )  decreases monotonically with increasing filling fractions which was 
to be expected-at higher filling fractions the modulation of the particle density is 
less pronounced and the barriers to tunnelling are smaller. 

We also address the question of how the compressibility of the ground state at 
v,  = 1 / 3  might be reproduced in this picture. The phase transition in the discrete 
Gaussian model is identified with the Wigner crystalLaughlin fluid transition. The 
transition incompressible Laughlin fluid/comprcssible fluid must have another origin 
(91. We find that the Wigner crystal becomcs unstable classically at a filling fraction 
u1 = 1 / 3  at which the shear modulus vanishes. As the Wigner crystal is supposed 
to be the configuration with the lowest energy classically and forms the starting point 
for the semiclassical treatment it is clear that the treatment must break down before 

In the next section we present the generalization of K W  to the n = 1 Landau 
level. In section 3 we give our results and section 4 is a summary. There are also three 
appendices which summarize the technical details of the generalizations of various 
results known for the n = 0 case to the n = 1 case. 

this point. 

2. Semiclassical formulation 

The semiclassical calculation due to KKAS 131 assumes that spin-polarized electrons 
occupy a partially filled Landau level. The classical minimum energy state in the basis 
of coherent (most localized) state$ is that in which electrons occupy orbitals localized 
about the lattice points (written as complex numbers) R; = Xi + iYi characteristic 
of the hexagonal Wigner-crystal lattice (see appendix A) 

The Ri are actually complex eigenvalues of the guiding centre operators bi, defined 
in equation (10). 

The difference between the calculation for the n = 0 and n = 1 Landau levels 
comes about as a result of the difference between the coherent states in the different 
Landau levels (see equation (12)). This gives rise to a different effective interaction 
between particles, l i ( l R l  - R21), see equations (19) and (ZO), but otherwise the 
expression for the n = 1 Landau level is as for the n = 0 Landau level. 
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The contribution to the partition function of a single tunnelling event of length 
L is approximated by (see appendix B) 

The term b[RC] accounts for the integral over fluctuations about the classical path 
RC. The classical action is SIR'], the tunnelling time is T ~ .  

The sum over contributions from different tunnelling events is approximately equal 
to the partition function of the classical discrete Gaussian model in which a is the 
inverse temperature. This model has a phase transition which KmS identified with 
the transition from Wigner crystal or 'sparse-ring' phase and Laughlin o r  'dense-ring' 
phase. The critical value of a is estimated for the hexagonal lattice to  lie between 
0.7 and 1.3. 

The values found for a,,(.) are given in table 1. We also list the coetficients 
Qs, Qv and K which characterize the variation of the effective interaction between 
particles (see appendix B). These are all smaller at any given filling fraction in the 
n = 1 than in the n = 0 Landau level. This was to be expected as the less localized 
nature of the orbitals, IR),=,, means that the density is more homogeneous and 
hence that the variations in the potential energy surface for the motion of electrons 
h the orbitals are less. The less localized nature of the orbitals also means that the 
effective mass in the action for the one-dimensional motion after integrating out the 
flucutations perpendicular to the tunnelling path is also larger (it varies as l / Q y )  131. 

Table 1. The parametrization oi the potential and action tor a single cooperative 
tunnelling event along a straight line path in a hexagonal Wigner c ~ ~ ~ l a l .  with latrice 
parameter a, for different filling iractions Y in the n = 0 and n = 1 Landau levels. 
The action of a single event is n per unit length (see equation (39)). no. (equation 
(36)), is the classical action per unjt length. I h e  qunntities Q., Qu and x parametrize 
the interpanicle interaction about the straight line path, (see equation (34)). 

v = 1 / 3  n = O  
n = l  

v = 1 / 5  n = O  
n = l  

v = l / 7  n = O  
n = l  

v = l / 9  n = O  
n = l  

n = l  
u = 1 / 1 3  n = O  

n = l  

u = l / l l  n = O  

1.2 11.1 3.5 
0.62 11.0 3.5 
0.99 9.5 2.9 
1.53 12.5 4.0 
0.87 8.9 2.7 
1.2 10.6 3.3 
0.82 8.6 2.6 
1.0 9.6 3.0 
0.79 8.5 2.6 

0.78 8.4 2.5 
0.89 9.0 2.7 

0.92 9.2 2.8 

1.47 1.28 
1.0s 0.88 
2.37 2.16 
257 2.42 
3.22 3.0 
3.46 3.27 
4.1 3.9 
4.3 4.1 
5.0 4.7 
5.1 4.9 
5.8 5.6 
6.0 5.8 

The net result for the action of a single tunnelling event, a(v)L.,  is that it does 
not differ greatly between the n = 0 and n = 1 Landau levels for U = 1 / 5 , 1 / 7 , .  . .. 
The values for o( in both Landau levels are greater than the estimate of the critical 
value a, .., 1.3 so that our estimates imply that the critical filling fraction for the 
transition from Wigner crystal to Laughlin fluid occurs for filling fractions greater 
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than 1/5, although given the number and quality of approximations involved this is is 
at best only a rough prediction. 

There is a larger difference between a,=,(1/3) and a,,,(l/3). with a, < a,. 
According to the identification made by KKAS of the dense ring phase with the 
incompressible Laughlin state the smaller value for a in the n = 1 Landau level 
would imply that the 1/3 state were more stable contradicting the results of finite 
size calculations. (These show that the v1 = 1/3 Laughlin state is only marginally 
stable.) We show in the next section the vl = 1/3 result is in fact meaningless as 
the basis for the semiclassical approximation breaks down. 

N dxmbmmenil and A M Reynolds 

3. Classical stability of the Wigner crystal 

The starting point for the semiclassical treatment has been the configurations which 
minimize the classical action. We have assumed that the Wigner crystal gives such a 
minimum. The test of the classical stability of the Wigner crystal is the shear modulus, 
c1. A negative sheaf modulus would imply that the Wigner crystal is not a stable 
configuration. In this section we report the  calculation of the shear modulus. 

Maki and Zotos [IO] found that the calculation of the shear modulus requires the 
correct treatment of the antisymmetrization of the basis states (22). In appendix C 
we outline the definition and calculation of the shear modulus. We show the result 
in figure 1. 

5 

R g u n  1. The shear modulus of the Wgnercryslal lattice in the n = 0 and n = 1 
Landau levels as a function of filling fraction, The shear modulus is normalized lo ils 
classical value. 
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In the n = 1 Landau level the shear modulus vanishes very close to the filling 
fraction ul = 1/3. This result is only approximate as in the calculation we have 
neglected three- and higher-body terms in the effective interaction. The correction 
terms may well shift slightly the filling fraction at which the shear modulus vanishes, 
but it is unlikely to affect the main result, namely that at u1 = 1 /3 the basis for the 
semiclassical treatment of the quantum Hall effect is not given. 

The apparent compressibility of the ground state of a system of polarized electrons 
in the n = 1 Landau level suggested by the results of finite size studies [7,8] is 
consistent with our result that the semiclassical treatment becomes invalid at U, = 
1/3. Experimentally something like a plateau has been reported [ll] but, as we 
have not taken account of inter-landau level effects nor of the possibility that the 
systems studied experimentally are not fully spin-polarized, a direct comparison with 
experiment is not possible. 

4. Summary 

We have generalized the semiclassical treatment of KKAS to the n = 1 Landau level. 
The tunnelling probability, a,(u), at the level of approximation we have used is not 
significantly different from ao(u)  for filling fractions v < 1/3 at which Laughlin 
incompressible fluids might be expected to be stable. This is the result of two effects 
which cancel: The tunnelling barriers are smaller owing to the reduced variation in 
charge density which results because the electrons cannot be so well localized in the 
n = 1 Landau level. The more delocalized nature of the electrons also leads to a 
larger effective mass in the action functional. The combination of these two effects 
leads to similar values for a in the two Landau levels. 

The shear modulus of the Wigner crystal vanishes at u1 % 1/3. The basis of the 
semiclassical treatment is therefore missing for filling fractions near 1/3. This result 
is consistent with the result suggested by calculations for small systems of particles 
interacting via Coulomb interaction projected onto the n = 1 Landau level that the 
ground state at u1 = 1 /3 is compressible. 
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Appendix A. The effective potentials 

In the following we keep closely to the notation of KKAS. We consider electrons 
(q = - e )  in a magnetic field B = -B i  and work always in the symmetric gauge 
with the vector potential Ai  = i B c i j r j .  The magnetic length 1 = m. 
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A.1. ~clotrcw and guiding centre motions 
It is helpful to separate the cyclotron and guiding centre motions of electrons. The 
cyclotron position, &, is 

N dxmbmmenil and A M Reynolds 

(3) 
[ .  = "+ r .  Qflc. .  

1 2 e ,,PI 

and the guiding centre position is given by 

(4) 
r .  q12 

t 2 e h '3 3 .  
R .  = L - - - < . , p .  

(The hat distinguishes the operator R from the eigenvalue R, equation (11)) 
Ladder operators, a (at), for cyclotron motion may be defined 

Q = [E ,  - i (q / e ) ty I / f i l .  

b = [kz + i(q/e)k#]/&L. 

(5 )  
These lower (raise) the Landau level index, n. Raising and lowering operators for 
the angular momentum about the origin, b and b+, may also be defined: 

These operators obey the canonical commutation relations [ a ,  a+] = [b, b+] = 1. 

A.2 Coherent stales 
The basis s ta te  for our calculations are the coherent states localized about the points 

(6) 

R = X + i Y  

where IO), satisfies 
a10), = 0 

The states IR), are eigenstates of b 
b [ O ) ,  = 0. 

R 
blR)n = @% 

R 
,(++ = n(Rl- & l '  

Here R = X - iY. The corresponding odinger wavf nctions are 

These are not orthogonal as 

(13) n,(R' I R),  = 6,,,e ( R ' R - R R ' ) / 4 f Z e - I ~ - R ' ~ ~ / 4 f z  

The N-body states we use as a basis in the estimation of the ring exchange action 
are just the unsymmetrized product states 

M=IRI,R,,...,RN)~. (14) 
Particlcs occupy coherent states at the guiding centre coordinates R,, . , . , RN. In 
the classical minimum energy configuration these form the lattice points o l  a ZD 
hexagonal lattice. 
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A.3. Matrix elements 

The matrix elements of an arbitrary function, f ( ~ ~ ~ ) ,  of the separation between two 
particles, rlZr between states + equation (14) are more easily evaluated if we write 
PI: 

'Ihken between states which have both particles in the nth Landau f(rtz) may be 
replaced by: 

and after writing the operator eiQ'Ri, as: 

e i Q . R ~ 2  = e i Q l b ~ , / ~ e - Q ' l ' / 2 e i Q l b , , / J Z  

the evaluation of matrix elements is straightforward. 

A.4. Effective two-baiy potential 

In the estimation of the contribution from the Coulomb interaction between electrons 
to the tunnelling action we retain only the two-body interaction (in the following we 
set 1 = 1): 

where we have used equations (16) and (17). This gives for n = 0 and n = 1 

where Q = R:,/8 and lo(l) are modified Bessel functions. The derivation of equation 
(20) follows simply after writing 
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A.S. Malci-Zotos potential 

In the calculation of the shear modulus Maki and Zotos [IO] found that it was 
necessary to assume fully antisymmeaized basis functions 

N d2mbncmenil and A M Reynolds 

I'b) = ( N ! ) - '  I Ru(*),R~(2),...,Ru(N))n (22) 
O €  SN 

where SN is the set of permutations of N objem. I$) is just a Slater determinant of 
single-particle coherent states. The expectation of the interaction energy as a function 
of the positions R I , .  . . , R ,  may be expanded into effective two-body and higher 
order terms 

As Maki and Zotos we retain only the effective two-body interaction V M z ,  which is 
given by 

For the n = 0 and n = 1 Landau levels this gives 

v,"=", = - J;;easecha Z,,(a) (U) 4 c  

\ iMZ = ___ fie2 I(r,(a)(l l  +sa2)  - rl(=)sa) secha 
4c 16 n = l  

+ (10(a)4a - l l (a)8a2)  cosecha] 

with a = R2/8. The result (U) was first reported by Maki and Zotos [lo]. 

Appendix B 

The partition function in the coherent state basis is (assuming continuous paths) [3] 

with 
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Here the R j ( r )  = ( X j ( 7 ) , q ( 7 ) )  label thecoherent statesoccupied by particles j 
at imaginary time 7 and satisfy 

RjW = R, ( j ) (P )  (29) 

The sum is over all permutations, 6, of the N particles. 
The semiclassical approximation consists of identifying the extremal paths of the 

action (28), Rc(.r), with corresponding actions S ( R C ) ,  and integrating over quantum 
fluctuations about these paths. The approximate evaluation of these integrals involves 
expanding the action up to quadratic order in the deviation from the classical path. 
Assuming that the paths are independent and do not interfere, the partition function 
may be witten as a sum over the classical extremizing paths 

D[Rc]  is called the fluctuation determinant and a w u n t s  for the contributions from 
the fluctuations about R'. The continuous classical extremal paths satisfy 

. av iX. = - 
3 ay, 

aV ii.. = = ax, 
As KKAS we assume that the contributions to 2 may be counted by starting from 

the classically minimal energy state the Wigner crystal with corresponding action, So. 
Baskaran [12] has argued that ring exchange events between any local classical energy 
minima which might be found in an incompressible fluid will contribute to the non- 
analytic behaviour of Z ( Y )  at U = 1/(2n+ 1). However the contribution from these 
additional configurations is thought to provide just a (probably small) renormalization 
to the non-analyticity [3]. 

The contribution to Z/Zo of a single ring exchange event involving L particles is 
given approximately by 

(32) 
d r  
TO 

= - e r p [ - a , ( u ) L  + i2?r f N ,  + O(ln L)]  

where 

(33) f = - ( v  1 - 1 -  1). 
2 

The factor Z, has been divided out so that we need only concentrate on tbe dif- 
ference S ( R C )  = S - So between the action of the exchange event and the action 
of the Wigner crystal. N, is the number of plaquettes of the triangulated classical 
configurations between which the system is tunnelling and which are enclosed by the 
ring. The factor dr/ro is the usual factor in instanton calculations in which an in- 
tegration over the event time is included. ro is the classical time for the tunnelling 
event to occur. 

Equation (32) follows after assuming that the action of the event does not depend 
on the shape of the ring so that the contribution is determined uniquely by its length. 
On the basis of this assumption all the effects of the different basis states for the 
different Landau levels are accounted for by the different values taken by an(v)  in 
the different Landau levels labelled by the index n. 
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al. Calculation of a,( U) 
The treatment of ring exchange in the n = 1 Landau level reduce in the approxima- 
tion of KKAS to the estimation of a,=,(u). We assume that the effects of variations 
of the total area of a path associated with deviations from straight line paths par- 
ticularly near corners is, as found in the n = 0 Landau level, just to give a small 
renormalization of the quantity a. (We we have not checked this numerically for the 
n = 1 Landau level.) We therefore consider just a simple ‘straight line exchange’ 
path. 

For cooperative tunnelling of particles along a straight line path of length, L ,  
parallel to the z direction the interaction term in the action integral is approximated 

N dXmbtumeni1 and A M Reynolds 

bY 

The constants Q, and Q, are evaluated numerically by fitting to the expansion of 
the true potential V,,. Integrating out the motion in the y direction gives an effective 
one-dimensional action functional [3]. The classical action is then 

S [ P ]  = a a ( u ) L  (35) 

with 

ao(u) = (Q,/Q,)’’* (8/hn) v - l .  (36) 

The fluctuation determinant D( RC) is evaluated approximately by mapping the 
action functional to that of a sine-Gordon field, +( z). As mentioned in KKAS the 
usual procedure for taking the continuum limit would make the replacement 

where + ( j )  = 27rXj / av .  This procedure needs care as n cannot be set equal to the 
sum Cj $ ( j a y ) * K = ( j )  which is logarithmically divergent. Instead we evaluate the 
parameter K numerically via 

(37) 
R=(O) - kz(k) 

I C 2  

where k ( k )  is the Fourier coefficient in the expansion 

n =  

k = ( k o )  
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ICq = is a typical wavelength at which the kinetic and potential contributiom 
to the action are about equal. 

The integration over the sineGordon field is known [13]. The final result for the 
contribution to the effective action for a straight line tunnelling process involving L 
sites is 

(38) 
Be-i d r  -'Y(I,)L 

% -e 
70 

where a(v) is given by 

Here 

s 8a - - (!y ($) 
Fixpression (39) depends on the three parameters Q=, Q, and K which character- 

ize the interaction between the particles. In table 1 we give the results for the n = 0 
and n = 1 Landau levels for the parameters Q=, Qg,  K and a for various v. 

Appendix C. The shear modulus 

The shear modulus, cl, measures the stiffness (speed of sound) of a lattice. A 
negative shear modulus indicates that the lattice is unstable. Both KKAS and Maki 
and Zotas have given expressions for c1 for general two-body interactions V (  R l z )  
between lattice sites in a hexagonal lattice 

where the sum is over lattice positions. This can also he written as a sum over 
reciprocal lattice vectors 

e, = - x ( 3 ~ ( G ) G +  i."(G)G2) 
16', G#O 

where V(G) is the Fourier transform of V ( R ) .  
Neither expression for c1 converges rapidly as, for large separations, the effective 

interaction I/,"z( R) (equations (25) and (26)) is asymptotic to 1 /R. However, if we 
separate out the contribution from the Coulomb interaction and write 

c1 = cy t x 3 R (  V'( R )  - V&,l) t Rz( V"( R) - V&) (43) 
R 
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then with V ( R )  = V Z Z ( R )  the sum converges quite rapidly. cf has been cal- 
culated by Bonsall and Maradudin and is known for the hexagonal lattice to be 
0 . 0 9 7 7 5 ~ ~ 1 ~ ~ ~  /i. 

N dYmbtumenil and A M Reynolds 
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